Essential Question: How can you use piecewise-defined functions to solve real-world problems?

KEY EXAMPLE
 (Lesson 13.1)

Key Vocabulary

absolute-value equation (ecuación de valor absoluto) absolute-value function (función de valor absolute)
mean (media)
greatest integer function (función de entero mayor) piecewise function (función a trozos)
step function (función escalón)

x	-4	-2	0	2	4	6
$f(x)$	$-2(-4)=8$	$-2(-2)=4$	$-2(0)=0$	$-2(2)=-4$	$\frac{1}{2}(4)+1=3$	$\frac{1}{2}(6)+1=4$

The transition from one rule to the other occurs at $x=2$. Show a closed dot at $(2,-4)$, since this point is part of the graph. Show an open dot at $(2,2)$, since this is not part of the graph.

KEY EXAMPLE

(Lesson 13.3)

Solve $-4|x+5|=-2$.

$$
|x+5|=\frac{1}{2}
$$

Divide both sides by -4.

$x+5=\frac{1}{2} \quad$ or $\quad x+5=-\frac{1}{2}$
Write as two equations.
$x=-4 \frac{1}{2} \quad$ or $\quad x=-5 \frac{1}{2} \quad$ Subtract 5 from both sides.

KEY EXAMPLE
 (Lesson 13.4)

Solve $\frac{1}{2}|x|-3 \leq 1$ graphically.
Let $f(x)=\frac{1}{2}|x|-3$ and $g(x)=1$.
Graph $f(x)$ and $\mathrm{g}(x)$.
Determine when $f(x) \leq \mathrm{g}(x)$.
The solution is $x \geq-8$ and $x \leq 8$.

EXERCISES

1. Copy and complete the table of values for $f(x)=\left\{\begin{array}{ll}x-3 & \text { if } x<-1 \\ -2 x+4 & \text { if } x \geq-1\end{array}\right.$. Graph the
function. (Lesson 13.1)

x	$f(x)$
-3	$?$
-2	$?$
-1	$?$
0	$?$
1	$?$
2	$?$
3	$?$

Solve each equation and inequality. (Lesson 13.3)
2. $6|x|+4=-2$
3. $2|4 x-1|=6$
4. $|2 x+3|+7=7$
5. $|x+4|-12 \leq 20$

module performance task

A Taxing Situation

The table below defines the amount of income tax a single U.S. taxpayer must pay to the federal government for income earned in 2013.

If taxable income is over	but not over	the tax is
$\$ 0$	$\$ 8,925$	10% of the amount over $\$ 0$
$\$ 8,926$	$\$ 36,250$	$\$ 892.50$ plus 15% of the amount over $\$ 8,925$
$\$ 36,251$	$\$ 87,850$	$\$ 4,991.25$ plus 25% of the amount over $\$ 36,250$
$\$ 87,851$	$\$ 183,250$	$\$ 17,891.25$ plus 28% of the amount over $\$ 87,850$
$\$ 183,251$	$\$ 398,350$	$\$ 44,603.25$ plus 33% of the amount over $\$ 183,250$
$\$ 398,351$	$\$ 400,000$	$\$ 115,586.25$ plus 35% of the amount over $\$ 398,350$
$\$ 400,001$	no limit	$\$ 116,163.75$ plus 39.6% of the amount over $\$ 400,000$

So, if your taxable income is $\$ 30,000$, you owe $\$ 892.50$ plus 15% of the amount by which your earnings exceed $\$ 8,925$.

- Write the equations for the piecewise-defined function that gives the income tax y on taxable income of x (where $x \leq \$ 100,000$).
- Graph the function.
- Find the percent of total taxable income that a person making $\$ 50,000$ and a person making $\$ 100,000$ pay in income tax.
Use numbers, words, or algebra to explain how you reached your conclusion.

(Beady) to Go On?

13.1-13.4 Piecewise-Defined Functions

- Online Homework
- Hints and Help
- Extra Practice

Write a function to represent each graph shown. (Lesson 13.1)
2.

3. The graph of $g(x)$ is a transformation of the graph of $f(x)=|x|$ left 2 units and reflected across the x-axis. Write a function for $g(x)$, and graph $g(x)$. (Lesson 13.2)

Solve each equation and inequality. (Lessons 13.3, 13.4)
4. $|5 x|+4=19$
5. $|2 x|+3 \geq 11$
6. $|4 x+2|-2=-18$
7. $|x+8|-5<2$

ESSENTIAL QUESTION

8. Write a real-world situation that could be modeled by $|x-14| \leq 3$.

MODULE 13
MIXED REVIEW

Assessment Readiness

1. Consider the function $f(x)= \begin{cases}3 & \text { if } x<2 \\ -x+1 & \text { if } 2 \leq x<6 \text {. Tell whether each of the } \\ x & \text { if } x \geq 6\end{cases}$ following is a solution of $f(x)$.
A. $(-5,3)$
B. $(2,-1)$
C. $(8,-7)$
2. Consider the relation represented by the mapping diagram.

Determine if each statement is True or False.

A. The domain is $\{-2,1,6,15\}$.
B. The range is $\{0,5,8,10\}$.
C. The relation is a function.
3. Find the intercepts and slope of $8 x-\frac{1}{2} y=12$. Determine if each statement is True or False.
A. The x-intercept is 4 .
B. The y-intercept is -24 .
C. The slope is 8 .
4. How many solutions does the equation $|x+6|-4=c$ have if $c=5$?

If $c=-10$? Justify your answers.

